Články

Albert Einstein a jeho mozog

5. októbra 2014
Einsteinov mozog

Albert Einstein (1879 - 1955), fyzik židovského pôvodu. Jeden z najvýznamnejších teoretických fyzikov. Autor všeobecnej teórie relativity (1915). E = mc2. Narodil sa v Nemecku, nemeckého občianstva sa vzdal r. 1896 a zostal bez štátnej príslušnosti. V roku 1901 získal švajčiarske občianstvo. Po nástupe Hitlera k moci bol obvinený zo židovskej fyziky, ktorá bola proti fyzike árijskej. V roku 1933 utiekol do USA, kde dostal v r. 1940 americké občianstvo, pričom mu zostalo aj občianstvo švajčiarskej .

Bol považovaný za pomalého žiaka a bol hanblivý, pravdepodobne bol dyslektik a podľa novších teórií bol u neho predpokladaný Aspergerov syndróm.

Bol proti nacistickému režimu a podporoval vývoj atómovej bomby v USA, aby predbehol Hitlera. Po vojne loboval za jadrové odzbrojenie ("Neviem, čím sa bude bojovať v tretej svetovej vojne, ale v štvrtej to budú polená a kamene"). V 50. rokoch protestoval proti politickým procesom v Československu. Zaslal aj telegram vtedajšiemu prezidentovi Klementovi Gottwaldovi, v ktorom žiadal o zbavenie vykonania rozsudku nad Miladou Horákovou, Závišom kalandrov, Oldřichom Peclom a Jánom Bouchaleml. Podporoval sionizmus a bolo mu navrhnuté stať sa prezidentom Izraela, čo odmietol. Opovrhoval nacionalizmom a vyjadroval pochybnosti, či je židovský štát najlepším riešením.

Bol ženatý s matematičkou Milevou Marioovov, ktorá sa kvôli nemu vzdala kariéry. Existujú však stopy, ktoré vedú k záverom, že je spolutvorkyňou teórií relativity. Konzultoval s ňou svoje teórie a názory. Na otázku, prečo sa nepodpísala pod jeden zo svojich patentov odpovedala: "Sme jeden kameň (Wir sind nur Ein Stein").

Avšak Eistein miloval aféry so ženami, ktoré priťahoval. S Milevou sa rozviedol a oženil sa so svojou sesternicou Elsou. Existujú názory, že aj v Česku žijú potomkovia Alberta Einsteina.

K štúdiu matematiky sa dostal asi v dvanástich rokoch. Bol považovaný za pomalého žiaka, pravdepodobne kvôli dyslexíi a celkovej hanblivosti. Práve tejto pomalosti prisudzoval sám neskôr význam pri objave teórie relativity. Oproti deťom, ktoré študujú matematiku od detstva, mohol vďaka rozvinutejšiemu intelektu chápať vzťahy priestoru a času v hlbších súvislostiach.

V roku 1905 publikoval Einstein zásadné tri vedecké práce na témy fotoelektrického javu, Brownovho pohybu a špeciálnu teóriu relativity. Mal vtedy 26 rokov. V roku.1915 dokončil prácu na všeobecnej teórii relativity. Za objasnenie fotoelektrického javu dostal v roku 1921 Nobelovu cenu.

Zdroje: Wiki

  prečítané 2080×
Začať trénovať svoj mozog Späť na výpis
Mgr. Ivana Jakubeková
Psycholožka, terapeutka. Absolvovala jednooborovou psychologii na FF MU v Brně. Mezi její další odborné vzdělání patří psychoterapeutický výcvik, kurzy a praxe v oblasti klinické psychologie a psychodiagnostiky. Osm let pracovala v Krizovém centru pro děti. V současné době pracuje v Pedagogicko-psychologické poradně a provozuje soukromou psychologickou praxi.

Podobné články

Einsteinov mozog

Albert Einstein zomrel r. 1955 v Princetone (New Jersey, USA) na výduť aorty. Bolo mu 76 rokov.

Niektorí tvrdia, že Einstein daroval v poslednej vôli svoj mozog na vedecké účely, iní hovoria, že povolenie na to dal Eisteinův syn s podmienkou, že závery skúmania budú publikované v odborných časopisoch.

Avšak, Eisnteinův mozog bol sedem a pol hodiny po jeho smrti vyňatý z tela. Pitvu na Princetonskej univerzite vykonával dr. Thomas Stoltz Harvey. Ten mozog vyňal, zvážil a odniesol ho do laboratória Pensylvánskej univerzity. Tam Einsteinov mozog odfotografoval z mnohých uhlov, rozkrájali na 240 malých kúskov, a ďalších 2000 tenkých plátkov, z ktorých niektoré si ponechal a ďalšie odovzdal vedúcim patológom. Až po 20 rokoch novinár Steven Levy odhalil malé tajomstvo patológov.

Čo sme sa dozvedeli z tohto geniálneho mozgu?

Vedecké výskumy zistili, že Eisteinova genialita nespočívala v neobvyklej veľkosti mozgu, ktorý vážil 1230g (priemerná váha ľudského mozgu je 1300 - 1400 g). Nebol teda veľký, zato bol ale mimoriadne komplikovaný a mal neobvyklú anatómiu.

Einstein mal nadpriemerný počet gliových buniek, ktoré sú zodpovedné za podporu a výživu neurónov. To mohlo byť spôsobené neobvykle vysokú mozgovú aktivitou, pretože mozog výživu jednoducho potreboval. Avšak tento rozdiel bol štatisticky významný v ľavom parietálnom laloku, ktorý je súčasťou asociačných oblastí mozgovej kôry, ktoré sú zodpovedné za inkorporácui a syntézu informácií z mnohých iných mozgových oblastí.

Jeho mozog mal tenšiu kôru, však s vyššiu hustotu neurónov.

Corpus callosum, ktoré zodpovedá za komunikáciu medzi oboma hemisférami, bolo o 20% širší a obsahovalo teda viac neurónových spojení, než u bežnej populácie. To mohlo viesť k lepšej komunikácii medzi oboma hemisférami.

Fotografie mozgu ukazujú zväčšenú Sylviovu ryhu (ktorá rozdeľuje parietálný lalok na dve časti), ale zároveň aj to, že jej časť chýbala. Teoreticky to mohlo spôsobiť rýchlejší prenos informácií medzi neurónmi tejto oblasti.

Spodná oblasť temenného laloku v oboch hemisférach bola oproti priemeru o 15% väčšia. Táto oblasť je dôležitá pre vizuálne a priestorové myslenie, matematické úvahy a trojdimenzionálne predstavy.

Celý Einsteinov život bol podobne ako jeho mozog neobvyklý. Pri vedeckom skúmaní jeho mozgu boli zistené isté anatomicko-štrukturálne zvláštnosti, ktoré mohli byť dôsledkom jeho geniality, však tiež dôsledkom niektorých udalostí jeho života (osobnostné charakteristiky, stretnutie s Milevou, štúdium matematiky s rozvinutejším intelektom, apod.) A pomalšie pracovné tempo.

Vedeckým skúmaním tiež prešli mozgy niektorých ďalších géniovi a slávnych osobností. Ale o tom zasa niekedy nabudúce.

Zdroje: Wiki

Wikipedia conVERTER: fyzici osobnosti.ca: Albert Einstein Wikipedia: Einsteinův mozek Einsteinův mozek pod lupou DeenaMedia WiseGeek: Jak se liší Einsteinův mozek od normálního

Keď mozog nefunguje správne: Časť prvá

V našich článkoch sa zvyčajne venujeme tréningu mozgu, ponúkame rady, ako svoj výkon v kognitívnych úlohách zvyšovať, čo je nakoniec i samotným zámerom projektu Mentem. No nasledujúcich niekoľko riadkov bude venovaných práve opačnému fenoménu, a to stavu, kedy mozog nepracuje tak, ako má.

Na úvod príbeh z histórie. V roku 1848 pracovník amerických železníc Phineas Gage utrpel vážnu nehodu. Lebkou mu po predčasnom výbuchu nálože preletela kovová tyč, ktorá zasiahla jeho čelný lalok. Gage zázrakom prežil. A nie len to. Bol schopný normálneho života, a hoci prišiel o jedno oko, nevykazoval nijaký úbytok inteligencie či kognitívnych schopností. Na prvý pohľad bol absolútne v poriadku, presne taký ako pred nehodou. Toto sa však rapídne zmenilo počas prvých mesiacov po prepustení z liečby. Gage nebol schopný udržať si prácu, jeho chovanie bolo drzé, nevhodné, často až extrémne nespoločenské. Neskôr sa pridali problémy s alkoholom, finančný bankrot spôsobený gamblerstvom. Zdá sa, akoby po tomto úraze Gage stratil schopnosť riadiť sa „zdravým rozumom“, schopnosť rozhodovať sa. Jeho príbuzní tvrdili, že ho nespoznávajú, že už to nie je ten istý človek. Americký neurovedec Antonio Damasio tvrdí, že Gageov prípad, ako aj mnohé podobné, ukazuje možnosť, že v prefrontálnom kortexe, ktorý mal Gage pri nehode zásadne poškodený, sa nachádza akýsi riadiaci mechanizmus, ktorý mám pomáha pri rozhodovaní.

Ďalšou zaujímavou skupinou prípadov sú pacienti s rozdeleným mozgom (split-brain patients). Hoci tento termín znie pomerne desivo, jedná sa o procedúru, ktorá je indikovaná pacientom so silnou epilepsiou. Kvalita života pacientov, ktorí majú epileptický záchvat niekoľkokrát denne, je tak nízka, že lekári v extrémnych prípadoch pristupujú práve k tejto technike. Keďže epileptický záchvat vzniká u týchto pacientov v jednom bode a následne sa šíri do celého mozgu, lekári pretnú pri operácii takzvané corpus callosum, čo je spleť nervových vlákien spájajúca ľavú a pravú hemisféru. Tým sa zabráni šíreniu záchvatov z jednej hemisféry do druhej, intenzita záchvatov sa podstatne znižuje a kvalita života pacientov rapídne zvyšuje. Táto procedúra je však občas spojená s bizarnými vedľajšími účinkami. Asi najzásadnejší z nich je takzvaný alien hand syndrome (syndróm odcudzenej ruky), kedy pacient po tomto zákroku stráca kontrolu nad jednou zo svojich rúk, čo v praxi znamená, že jedna ruka si robí absolútne čo „jej zíde na um“. Keď si pacient zapína košeľu, jeho „odcudzená“ ruka je znova gombík po gombíku rozopína. Zdokumentované sú i prípade, kedy bola táto „odcudzená“ ruka dokonca agresívna a odhliadnuc od vôle svojho majiteľa hádzala po okolí predmety. Hoci je takýto život ťažký, pacienti s rozdeleným mozgom i tak jednohlasne tvrdia, že je to život pestrejší a jednoduchší ako ten pred zákrokom.

Popisom prípadu Phineasa Gagea a pacientmi s rozdeleným mozgom končí prvá časť dvojdielneho seriálu o poruchách fungovania ľudského mozgu. V druhej časti tohto krátkeho seriálu o zvláštnostiach, ktoré môžu nastať ak náš mozog utrpí ujmu, sa pozrieme na poruchy reči (afázia) a na poruchy zrakovej percepcie. Ďalší diel teda nebude o nič menej zaujímavý ako ten, ktorý ste práve dočítali.

Ako pôsobí Mozartova hudba na analytické schopnosti

Hudba rozvíja matematické vzdelanie, hovorí Tereza Pařilová. Sama je toho skvelým príkladom: opustila kariéru harfistky, aby vyštudovala informatiku. Zároveň vo výskumnom centre CEITEC skúma vplyv hudobného vzdelania na mozog a jeho funkcie. V hudbe vidí možný liek po úrazoch mozgu alebo pri demenciách.

Souvislost hudby a kognitivních schopností proslavil kontroverzní Mozartův efekt. Jaký je skutečný vliv Mozartovy skladby na kognitivní schopnosti?

Zjistilo se, že když děti na druhém stupni základní školy a vysokoškoláci poslouchali úryvek z Mozarta ze sonáty K. 448, zlepšila se jim krátkodobá schopnost analytického matematického uvažování oproti situacím, kdy poslouchali jakoukoli jinou sonátu nebo neposlouchali nic. Efekt nicméně trval relativně krátce po poslechu úryvku, který nebyl moc dlouhý, trval asi jedenáct minut.

Moje kolegyně MUDr. Klára Štillová tento efekt studovala na epilepticích. Zjistila, že pokud jim v určitých intervalech dlouhodoběji pouští tuto jedenáctiminutovou ukázku, do značné míry tím eliminuje epileptické záchvaty. Sonáta tedy ovlivňuje část mozku, která u dětí stojí za oním zlepšení analytického matematického myšlení – a zároveň stimuluje i oblasti, které jsou postižené u epileptiků a které mohou u každého z nich ležet jinde. Cílí zřejmě na nějaké společné centrum, které mozek ovlivňuje natolik, že epileptické výboje potlačí.

Jak je to možné – a proč zrovna u této sonáty?

To zatím není úplně probádané. Určitě záleží na intervalech, které následují po sobě, pokud tam máte například kvartu, kvintu, oktávu, přeskakujete do jiné tóniny… Podstata tkví v tom, že jdou po sobě přesně v tomto sledu. Pokud byste obrátil akordy nebo sonátu zahrál v jiné tónině, tak efekt zmizí. Závisí na frekvenci tónů, frekvenci celého zvuku, způsobu poskládání akordů – a posun do jiné tóniny by změnil i neurofyziologické vlastnosti.

Aktuálně na výzkumu spolupracujeme s inženýry, kteří studují fyzikální vlastnosti daného úryvku sonáty, aby je mohli porovnat po přesunu skladby do jiné tóniny nebo s jinými sonátami. Právě fyzikální vlastnosti jsou, myslím, podstatné. Mozart skladbu samozřejmě nenapsal, aby s ní šel léčit epileptiky – ale podařilo se mu napsat ji tak, že vlastnosti daného zvuku mají na mozek tyto účinky.

Mozartův efekt se tedy týká situačního efektu hudby na posluchače. Existují i dlouhodobé efekty?

Víme zcela určitě, že provozování hudby – aktivní i pasivní – rozvíjí i další kognitivní činnosti. Pokud porovnáte žáky základních uměleckých škol s dětmi, které nehrají vůbec na nic, jsem přesvědčená, že jejich analytické myšlení a schopnost myšlenkového skládání věcí do celků je na mnohem vyšší úrovni.

Představte si klavír: hrajete dvěma rukama a každou z nich něco jiného – což si mozek musí spojit. Mozek je skvěle vycvičený ve spojování věcí, které spolu nesouvisí. Zároveň umí oddělovat motoriku levé a pravé ruky – a k tomu ještě nohy, pokud hrajete s pedálem.

Existují ostatně terapie založené na tom, že se lidé učí hrát na hudební nástroje – ať už se jedná o arteterapii, muzikoterapii nebo schopnosti učit se oddělovat levé a pravé ruky, po mrtvicích, degenerativních onemocněních a podobně. Hudba zcela určitě působí i v dlouhodobém horizontu – a všechno se to samozřejmě týká mozku. V mozku všechno končí – nebo naopak začíná, chcete-li.

A u zdravých lidí?

Je prokázané, že pokud hrajete na hudební nástroj, zvětšují se vám určité oblasti v mozku a máte lepší analytické a matematické myšlení. O profesionálních hudebnících se říká „jsou to hudebníci“ – a myslí se tím, že jsou zabředlí výhradně v hudební oblasti a nemají třeba obecný nebo nějak specifický přehled. Oni přitom mají skvělé předpoklady, aby byli i výbornými matematiky, pokud by měli šanci se k tomu dostat a rozvíjet. Ta část hemisféry, která je větší u matematiků, je větší i u těch hudebníků; obojí je spolu silně spojené.

Takový vztah je i námětem vašeho výzkumu, ve kterém zkoumáte vliv hudby na mozek. Co přesně se pokoušíte zjistit?

Chceme zjistit, jaký je rozdíl ve vnímání vážné hudby u umělců, kteří se jí živí a přichází s ní do styku denodenně – a u pasivních posluchačů. Lidí, kteří rádi poslouchají vážnou hudbu, chodí na koncerty, ale nehrají na žádný hudební nástroj a neznají noty nad rámec běžného vzdělání. Snažíme se zjistit, jestli dlouhodobé vzdělávání v klasické hudbě přispívá k rozvoji určitých částí mozku, jak se liší jeho aktivace při poslechu té které ukázky, jestli je aktivnější u profesionálních hudebníků nebo u ostatních.

Já bych ještě ráda zkusila – ale to už se jedná o další cíl – jestli může hudební vzdělávání nebo hra na hudební nástroj pomoci jako způsob terapie u neurodegenerativních onemocnění. Podobně jako funguje Mozartův efekt u epileptiků: myslím, že takovou možnost dokazuje. Uvidíme, jestli výzkum prokáže signifikantní rozdíly mezi profesionálními a neprofesionálními hudebníky, případně jednotlivými nástroji: jestli může být efekt odlišný třeba u dechařů než u lidí, kteří více používají prsty – klavíristů, smyčcařů…

Doufám, že pokud něco objevíme, mohli bychom studii rozšířit i na práci s pacienty, ať už by se jednalo třeba o epileptiky, lidi po mrtvici nebo třeba s demencí. Umím si představit, že by bylo možné pozitivně ovlivnit terapii třeba u Alzheimerovy nebo Parkinsonovy choroby.

Je možné dát čtenářům nějaké obecné doporučení, jestli jim hudba může pomoct, aby se třeba lépe soustředili v práci?

Pokud jde o soustředění, tak zcela určitě doporučuji toho Mozarta – a můžete ho poslouchat několikrát dokola, aby měl dlouhodobý efekt. Ten krátkodobý, jak jsem říkala, nepřetrvává, může mít vliv maximálně pár hodin.

Jinak bych obecně pro zdravého člověka doporučila vybrat si, co vám vyhovuje a co je ve vašem rytmu. Některá hudba je rychlá a člověk je pak možná až příliš excitovaný – a jiná zase příliš pomalá a člověk je usínavý, zpomalenější. Rytmus těla je u každého jiný, takže jde spíš o to, najít si vlastní hudbu. A nemusí se nutně jednat o tu klasickou. Stejně jako ve svých výzkumech žádáme subjekty, aby si vybrali vlastní hudbu, která se jim dobře poslouchá, tak můžu vám doporučit najít si tu svoji, která vám dobře vyhovuje. Aby vám ani nepumpovala tep, ani jste u ní neusínal.

Ako to je v skutočnosti s Eskimákmi? Majú naozaj niekoľko názvov pre sneh?

Určite ste sa už stretli s informáciou, že obyvatelia severských krajín, kde sneh pokrýva zem väčšinu roka, majú práve pre sneh niekoľko názvov, dokonca možno až niekoľko desiatok rôznych slov, či slovných kategórií, ktoré popisujú rôzne typy snehu. Tento známy mýtus sa rozšíril i na iné kultúry, napríklad obyvateľov Sahary a ich kategórie pre piesok. Popísaný efekt je údajne spôsobený kvalitatívne odlišným vnímaním príslušníkov danej kultúry a schopnosťou rozlíšiť rôzne kategórie či už piesku na Sahare alebo snehu na severnom póle. Málokto však vie, ako tento mýtus vznikol. Autormi, ktorí stoja za touto informáciou, sú páni Whorf a jeho kolega Sapir, ktorí už v šesťdesiatych rokoch vyslovili myšlienku, že jazyk, konkrétne jazykové kategórie, ovplyvňujú zrakové vnímanie (poznáme ju pod názvom hypotéza jazykovej relativity). Takže podľa ich názoru to, že určitá kultúra má niekoľko jazykových kategórií pre sneh spôsobuje kvalitatívne rozdielne, presnejšie vnímanie samotného snehu, jeho farby, či štruktúry.

Táto myšlienka vedecký svet zaujíma dodnes, hoci jej pôvodná forma, práve tá so snehom u Eskimákov a pieskom na Sahare, už nie je stredobodom akademického záujmu. Pozornosť sa neskôr zamerala hlavne na farebné kategórie a vnímanie farieb kultúrami, ktoré majú tieto kategórie diametrálne odlišné.

V experimentoch sa vedci zamerali na skúmanie farebných kategórii a následne na rozpoznávanie rozdielov medzi farbami z rovnakej farebnej kategórie (napríklad rôzne odtiene modrej) a rozdielnej farebnej kategórie (modrá a zelená). Príslušníci rôznych kultúr absolvovali tento experiment a výsledky neboli ani zďaleka tak jednoznačné, ako predpokladali Sapir a Whorf, keď hypotézu jazykovej relativity popisovali.

Zistenia odhalili, že hoci je rozpoznávanie farieb z rôznych farebných kategórii rýchlejšie, platí to iba pre pravú polovicu zorného poľa. Autori to vysvetľujú tak, že pravé zorné pole je spojené s ľavou mozgovou hemisférou, kde sú lokalizované centrá reči (Brockova a Wernickeho oblasť) a teda i centrá jazykových kategórií. Tento výsledok podporuje myšlienku, že jazykové kategórie pomáhajú pri zrakovom vnímaní, no v bežnom živote, kde využívame obe oči a zorné pole nevnímame ako rozdelené na pravú a ľavú časť, je tento efekt zanedbateľný.

Z výskumov vnímania farieb rôznymi kultúrami, ktoré využívajú rôzne slovné kategórie pre farby sa teda nepotvrdilo, že by naše slovné kategórie výrazne ovplyvňovali vnímanie. Ak by sme tieto poznatky aplikovali do pôvodnej hypotézy o Eskimákoch a snehu, pravdepodobne by sme prišli na to, že za eskimáckymi názvami pre sneh nie je ich presnejšie vnímanie štruktúry a farby snehu, ale skôr obdobie, kedy sneh napadol, či jeho množstvo.

Tento pomerne obľúbený mýtus je teda pravdivý len z malej časti a v bežnom živote je takmer nepostrehnuteľný.

Zdroje:

Gilbert, A. L., Regier, T., Kay, P., & Ivry, R.B. (2006). Whorf hypothesis is supported in the right visual field but not the left. PNAS, 103( 2), 489–494. Kay, P,. & Kemton, W. (1984). What Is the Sapir-Whorf Hypothesis? American Anthropological Association, 86, 65-79. Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 30(10), 1-8.