Prečítajte si náš blog

Články na téma historické osobnosti a udalosti

Ako pôsobí Mozartova hudba na analytické schopnosti

Hudba rozvíja matematické vzdelanie, hovorí Tereza Pařilová. Sama je toho skvelým príkladom: opustila kariéru harfistky, aby vyštudovala informatiku. Zároveň vo výskumnom centre CEITEC skúma vplyv hudobného vzdelania na mozog a jeho funkcie. V hudbe vidí možný liek po úrazoch mozgu alebo pri demenciách.

Souvislost hudby a kognitivních schopností proslavil kontroverzní Mozartův efekt. Jaký je skutečný vliv Mozartovy skladby na kognitivní schopnosti?

Zjistilo se, že když děti na druhém stupni základní školy a vysokoškoláci poslouchali úryvek z Mozarta ze sonáty K. 448, zlepšila se jim krátkodobá schopnost analytického matematického uvažování oproti situacím, kdy poslouchali jakoukoli jinou sonátu nebo neposlouchali nic. Efekt nicméně trval relativně krátce po poslechu úryvku, který nebyl moc dlouhý, trval asi jedenáct minut.

Moje kolegyně MUDr. Klára Štillová tento efekt studovala na epilepticích. Zjistila, že pokud jim v určitých intervalech dlouhodoběji pouští tuto jedenáctiminutovou ukázku, do značné míry tím eliminuje epileptické záchvaty. Sonáta tedy ovlivňuje část mozku, která u dětí stojí za oním zlepšení analytického matematického myšlení – a zároveň stimuluje i oblasti, které jsou postižené u epileptiků a které mohou u každého z nich ležet jinde. Cílí zřejmě na nějaké společné centrum, které mozek ovlivňuje natolik, že epileptické výboje potlačí.

Jak je to možné – a proč zrovna u této sonáty?

To zatím není úplně probádané. Určitě záleží na intervalech, které následují po sobě, pokud tam máte například kvartu, kvintu, oktávu, přeskakujete do jiné tóniny… Podstata tkví v tom, že jdou po sobě přesně v tomto sledu. Pokud byste obrátil akordy nebo sonátu zahrál v jiné tónině, tak efekt zmizí. Závisí na frekvenci tónů, frekvenci celého zvuku, způsobu poskládání akordů – a posun do jiné tóniny by změnil i neurofyziologické vlastnosti.

Aktuálně na výzkumu spolupracujeme s inženýry, kteří studují fyzikální vlastnosti daného úryvku sonáty, aby je mohli porovnat po přesunu skladby do jiné tóniny nebo s jinými sonátami. Právě fyzikální vlastnosti jsou, myslím, podstatné. Mozart skladbu samozřejmě nenapsal, aby s ní šel léčit epileptiky – ale podařilo se mu napsat ji tak, že vlastnosti daného zvuku mají na mozek tyto účinky.

Mozartův efekt se tedy týká situačního efektu hudby na posluchače. Existují i dlouhodobé efekty?

Víme zcela určitě, že provozování hudby – aktivní i pasivní – rozvíjí i další kognitivní činnosti. Pokud porovnáte žáky základních uměleckých škol s dětmi, které nehrají vůbec na nic, jsem přesvědčená, že jejich analytické myšlení a schopnost myšlenkového skládání věcí do celků je na mnohem vyšší úrovni.

Představte si klavír: hrajete dvěma rukama a každou z nich něco jiného – což si mozek musí spojit. Mozek je skvěle vycvičený ve spojování věcí, které spolu nesouvisí. Zároveň umí oddělovat motoriku levé a pravé ruky – a k tomu ještě nohy, pokud hrajete s pedálem.

Existují ostatně terapie založené na tom, že se lidé učí hrát na hudební nástroje – ať už se jedná o arteterapii, muzikoterapii nebo schopnosti učit se oddělovat levé a pravé ruky, po mrtvicích, degenerativních onemocněních a podobně. Hudba zcela určitě působí i v dlouhodobém horizontu – a všechno se to samozřejmě týká mozku. V mozku všechno končí – nebo naopak začíná, chcete-li.

A u zdravých lidí?

Je prokázané, že pokud hrajete na hudební nástroj, zvětšují se vám určité oblasti v mozku a máte lepší analytické a matematické myšlení. O profesionálních hudebnících se říká „jsou to hudebníci“ – a myslí se tím, že jsou zabředlí výhradně v hudební oblasti a nemají třeba obecný nebo nějak specifický přehled. Oni přitom mají skvělé předpoklady, aby byli i výbornými matematiky, pokud by měli šanci se k tomu dostat a rozvíjet. Ta část hemisféry, která je větší u matematiků, je větší i u těch hudebníků; obojí je spolu silně spojené.

Takový vztah je i námětem vašeho výzkumu, ve kterém zkoumáte vliv hudby na mozek. Co přesně se pokoušíte zjistit?

Chceme zjistit, jaký je rozdíl ve vnímání vážné hudby u umělců, kteří se jí živí a přichází s ní do styku denodenně – a u pasivních posluchačů. Lidí, kteří rádi poslouchají vážnou hudbu, chodí na koncerty, ale nehrají na žádný hudební nástroj a neznají noty nad rámec běžného vzdělání. Snažíme se zjistit, jestli dlouhodobé vzdělávání v klasické hudbě přispívá k rozvoji určitých částí mozku, jak se liší jeho aktivace při poslechu té které ukázky, jestli je aktivnější u profesionálních hudebníků nebo u ostatních.

Já bych ještě ráda zkusila – ale to už se jedná o další cíl – jestli může hudební vzdělávání nebo hra na hudební nástroj pomoci jako způsob terapie u neurodegenerativních onemocnění. Podobně jako funguje Mozartův efekt u epileptiků: myslím, že takovou možnost dokazuje. Uvidíme, jestli výzkum prokáže signifikantní rozdíly mezi profesionálními a neprofesionálními hudebníky, případně jednotlivými nástroji: jestli může být efekt odlišný třeba u dechařů než u lidí, kteří více používají prsty – klavíristů, smyčcařů…

Doufám, že pokud něco objevíme, mohli bychom studii rozšířit i na práci s pacienty, ať už by se jednalo třeba o epileptiky, lidi po mrtvici nebo třeba s demencí. Umím si představit, že by bylo možné pozitivně ovlivnit terapii třeba u Alzheimerovy nebo Parkinsonovy choroby.

Je možné dát čtenářům nějaké obecné doporučení, jestli jim hudba může pomoct, aby se třeba lépe soustředili v práci?

Pokud jde o soustředění, tak zcela určitě doporučuji toho Mozarta – a můžete ho poslouchat několikrát dokola, aby měl dlouhodobý efekt. Ten krátkodobý, jak jsem říkala, nepřetrvává, může mít vliv maximálně pár hodin.

Jinak bych obecně pro zdravého člověka doporučila vybrat si, co vám vyhovuje a co je ve vašem rytmu. Některá hudba je rychlá a člověk je pak možná až příliš excitovaný – a jiná zase příliš pomalá a člověk je usínavý, zpomalenější. Rytmus těla je u každého jiný, takže jde spíš o to, najít si vlastní hudbu. A nemusí se nutně jednat o tu klasickou. Stejně jako ve svých výzkumech žádáme subjekty, aby si vybrali vlastní hudbu, která se jim dobře poslouchá, tak můžu vám doporučit najít si tu svoji, která vám dobře vyhovuje. Aby vám ani nepumpovala tep, ani jste u ní neusínal.

Keď mozog nefunguje správne: Časť prvá

V našich článkoch sa zvyčajne venujeme tréningu mozgu, ponúkame rady, ako svoj výkon v kognitívnych úlohách zvyšovať, čo je nakoniec i samotným zámerom projektu Mentem. No nasledujúcich niekoľko riadkov bude venovaných práve opačnému fenoménu, a to stavu, kedy mozog nepracuje tak, ako má.

Na úvod príbeh z histórie. V roku 1848 pracovník amerických železníc Phineas Gage utrpel vážnu nehodu. Lebkou mu po predčasnom výbuchu nálože preletela kovová tyč, ktorá zasiahla jeho čelný lalok. Gage zázrakom prežil. A nie len to. Bol schopný normálneho života, a hoci prišiel o jedno oko, nevykazoval nijaký úbytok inteligencie či kognitívnych schopností. Na prvý pohľad bol absolútne v poriadku, presne taký ako pred nehodou. Toto sa však rapídne zmenilo počas prvých mesiacov po prepustení z liečby. Gage nebol schopný udržať si prácu, jeho chovanie bolo drzé, nevhodné, často až extrémne nespoločenské. Neskôr sa pridali problémy s alkoholom, finančný bankrot spôsobený gamblerstvom. Zdá sa, akoby po tomto úraze Gage stratil schopnosť riadiť sa „zdravým rozumom“, schopnosť rozhodovať sa. Jeho príbuzní tvrdili, že ho nespoznávajú, že už to nie je ten istý človek. Americký neurovedec Antonio Damasio tvrdí, že Gageov prípad, ako aj mnohé podobné, ukazuje možnosť, že v prefrontálnom kortexe, ktorý mal Gage pri nehode zásadne poškodený, sa nachádza akýsi riadiaci mechanizmus, ktorý mám pomáha pri rozhodovaní.

Ďalšou zaujímavou skupinou prípadov sú pacienti s rozdeleným mozgom (split-brain patients). Hoci tento termín znie pomerne desivo, jedná sa o procedúru, ktorá je indikovaná pacientom so silnou epilepsiou. Kvalita života pacientov, ktorí majú epileptický záchvat niekoľkokrát denne, je tak nízka, že lekári v extrémnych prípadoch pristupujú práve k tejto technike. Keďže epileptický záchvat vzniká u týchto pacientov v jednom bode a následne sa šíri do celého mozgu, lekári pretnú pri operácii takzvané corpus callosum, čo je spleť nervových vlákien spájajúca ľavú a pravú hemisféru. Tým sa zabráni šíreniu záchvatov z jednej hemisféry do druhej, intenzita záchvatov sa podstatne znižuje a kvalita života pacientov rapídne zvyšuje. Táto procedúra je však občas spojená s bizarnými vedľajšími účinkami. Asi najzásadnejší z nich je takzvaný alien hand syndrome (syndróm odcudzenej ruky), kedy pacient po tomto zákroku stráca kontrolu nad jednou zo svojich rúk, čo v praxi znamená, že jedna ruka si robí absolútne čo „jej zíde na um“. Keď si pacient zapína košeľu, jeho „odcudzená“ ruka je znova gombík po gombíku rozopína. Zdokumentované sú i prípade, kedy bola táto „odcudzená“ ruka dokonca agresívna a odhliadnuc od vôle svojho majiteľa hádzala po okolí predmety. Hoci je takýto život ťažký, pacienti s rozdeleným mozgom i tak jednohlasne tvrdia, že je to život pestrejší a jednoduchší ako ten pred zákrokom.

Popisom prípadu Phineasa Gagea a pacientmi s rozdeleným mozgom končí prvá časť dvojdielneho seriálu o poruchách fungovania ľudského mozgu. V druhej časti tohto krátkeho seriálu o zvláštnostiach, ktoré môžu nastať ak náš mozog utrpí ujmu, sa pozrieme na poruchy reči (afázia) a na poruchy zrakovej percepcie. Ďalší diel teda nebude o nič menej zaujímavý ako ten, ktorý ste práve dočítali.

Ako to je v skutočnosti s Eskimákmi? Majú naozaj niekoľko názvov pre sneh?

Určite ste sa už stretli s informáciou, že obyvatelia severských krajín, kde sneh pokrýva zem väčšinu roka, majú práve pre sneh niekoľko názvov, dokonca možno až niekoľko desiatok rôznych slov, či slovných kategórií, ktoré popisujú rôzne typy snehu. Tento známy mýtus sa rozšíril i na iné kultúry, napríklad obyvateľov Sahary a ich kategórie pre piesok. Popísaný efekt je údajne spôsobený kvalitatívne odlišným vnímaním príslušníkov danej kultúry a schopnosťou rozlíšiť rôzne kategórie či už piesku na Sahare alebo snehu na severnom póle. Málokto však vie, ako tento mýtus vznikol. Autormi, ktorí stoja za touto informáciou, sú páni Whorf a jeho kolega Sapir, ktorí už v šesťdesiatych rokoch vyslovili myšlienku, že jazyk, konkrétne jazykové kategórie, ovplyvňujú zrakové vnímanie (poznáme ju pod názvom hypotéza jazykovej relativity). Takže podľa ich názoru to, že určitá kultúra má niekoľko jazykových kategórií pre sneh spôsobuje kvalitatívne rozdielne, presnejšie vnímanie samotného snehu, jeho farby, či štruktúry.

Táto myšlienka vedecký svet zaujíma dodnes, hoci jej pôvodná forma, práve tá so snehom u Eskimákov a pieskom na Sahare, už nie je stredobodom akademického záujmu. Pozornosť sa neskôr zamerala hlavne na farebné kategórie a vnímanie farieb kultúrami, ktoré majú tieto kategórie diametrálne odlišné.

V experimentoch sa vedci zamerali na skúmanie farebných kategórii a následne na rozpoznávanie rozdielov medzi farbami z rovnakej farebnej kategórie (napríklad rôzne odtiene modrej) a rozdielnej farebnej kategórie (modrá a zelená). Príslušníci rôznych kultúr absolvovali tento experiment a výsledky neboli ani zďaleka tak jednoznačné, ako predpokladali Sapir a Whorf, keď hypotézu jazykovej relativity popisovali.

Zistenia odhalili, že hoci je rozpoznávanie farieb z rôznych farebných kategórii rýchlejšie, platí to iba pre pravú polovicu zorného poľa. Autori to vysvetľujú tak, že pravé zorné pole je spojené s ľavou mozgovou hemisférou, kde sú lokalizované centrá reči (Brockova a Wernickeho oblasť) a teda i centrá jazykových kategórií. Tento výsledok podporuje myšlienku, že jazykové kategórie pomáhajú pri zrakovom vnímaní, no v bežnom živote, kde využívame obe oči a zorné pole nevnímame ako rozdelené na pravú a ľavú časť, je tento efekt zanedbateľný.

Z výskumov vnímania farieb rôznymi kultúrami, ktoré využívajú rôzne slovné kategórie pre farby sa teda nepotvrdilo, že by naše slovné kategórie výrazne ovplyvňovali vnímanie. Ak by sme tieto poznatky aplikovali do pôvodnej hypotézy o Eskimákoch a snehu, pravdepodobne by sme prišli na to, že za eskimáckymi názvami pre sneh nie je ich presnejšie vnímanie štruktúry a farby snehu, ale skôr obdobie, kedy sneh napadol, či jeho množstvo.

Tento pomerne obľúbený mýtus je teda pravdivý len z malej časti a v bežnom živote je takmer nepostrehnuteľný.

Zdroje:

Gilbert, A. L., Regier, T., Kay, P., & Ivry, R.B. (2006). Whorf hypothesis is supported in the right visual field but not the left. PNAS, 103( 2), 489–494. Kay, P,. & Kemton, W. (1984). What Is the Sapir-Whorf Hypothesis? American Anthropological Association, 86, 65-79. Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 30(10), 1-8.

Umelá inteligencia – Môže sa počítač vyrovnať ľudskému mozgu?

Vznik kognitívnej psychológie v 60. rokoch bol do veľkej miery podnietený pokrokmi v rozvoji počítačov. „Počítačová metafora“ poukazovala na podobnosť fungovania poznávacích procesov u počítačov a ľudského mozgu. Dnes sa zdôrazňujú skôr ich odlišnosti: mozog a počítače fungujú na rozdielnych princípoch, rovnako ako nemožno porovnávať lietadlá s vtáčími krídlami. Vedci však neustále pracujú na vývoji umelej inteligencie, teda inteligentného správania produkovaného počítačmi či počítačovými softvérmi.

Umelá inteligencia - kde je hranica medzi robotom a človekom?

Pokiaľ by ľudský pozorovateľ nedokázal rozoznať, či komunikuje s človekom, alebo robotom, môžeme hovoriť o umelej inteligencii. Tak premýšľal v roku 1950 britský matematik Alan Turing. Aby svoju teóriu aplikoval v praxi, vyvinul Turing test: vyšetrovateľ si píše s dvomi osobami – jednou z nich je živý človek, druhou počítač – a pokúša sa určiť, kto je kto. Cieľom počítača je vystupovať ako človek. Pokiaľ by sa mu podarilo vyšetrovateľa zmiasť aspoň na tretinu času v priebehu 5-minútovej konverzácie, prešiel by Turingovým testom. V roku 2014 sa na webe BBC objavila správa, že program „Eugene Goostman“ (imaginárny 13-ročný ukrajinský chlapec) testom prešiel. Mnohí experti však experiment spochybňujú.

Prečo v niektorých oblastiach umelá inteligencia víťazí nad ľudskou?

Procesmi evolúcie sa v mozgu rozvinuli tie schopnosti, ktoré sú dôležité pre prežitie. Jednou z najvýznamnejších je pripravenosť pružne reagovať na okolné prostredie. Schopnosť počítačov vykonávať nespočetné repetitívne operácie, či zhromažďovať miliardy štatistických dát, je pre prežitie človeka oproti iným funkciám nepodstatná, a tak sa u neho nerozvinula.

V ktorých oblastiach sa umelá inteligencia snaží priblížiť človeku?

Získavanie a spracovávanie informácií

Človek získava prostredníctvom zmyslových vnemov obrovské množstvo nových informácií. Už ako deti sa naučíme rozoznávať, čo vidíme na obrázku, čo počujeme. Sme schopní „dekódovať“ text písaný rukou. V tejto oblasti urobili i počítače veľký pokrok: v roku 2012 ukázal tím Googlu počítaču milióny obrázkov. Počítač sa analyzovaním obrovského množstva dát naučil objekty rozoznávať a kategorizovať. Facebook v roku 2014 prišiel s algoritmom DeepFace, ktorý dokáže rozoznať ľudskú tvár v 97% prípadov. Novšie generácie iPhonov majú Siri – inteligentnú osobnú asistentku, ktorá vie rozpoznávať hlas, vyhľadať informácie, ktoré potrebujete a riešiť množstvo ďalších úloh. Pre počítače je však zatiaľ ťažké určiť, čo zo záplavy informácií, ktoré vyhľadá, je dôležité a aké závery z toho vyplývajú (napr. písanie reportáží, výskum).

Riešenie neštrukturovaných problémov

Počítač rieši problémy pomocou schopností, ktoré do neho „vložia“ ľudskí programátori. To je možné, pokiaľ sú problémy jasne vymedzené a existujú určité pravidlá či postupy, ako ich riešiť. Ťažšie je to v prípade, ak sa jedná o problém nepredvídateľný. Schopnosť človeka riešiť problémy je rozvinutá i vďaka schopnosti využívať kontext. Ľudský mozog má, na rozdiel od počítača, autobiografickú pamäť, ktorá obsahuje naše poznatky, vzťahy, spomienky a zážitky. Tie nám umožňujú „domyslieť si“ zmysel v nejednoznačných situáciach. Pokiaľ si napríklad prečítame vetu s mnohovýznamovým slovom, podľa kontextu si dokážeme odvodiť správny význam slova. U počítačov je táto schopnosť vo vývoji.

Nerutinná manuálna práca, pohyb v priestore

Vykonávanie komplexných úloh v 3-D priestore (upratovanie, varenie, riadenie auta, až po robenie manikúry) vyžaduje súhru viacerých mozgových centier. Tieto úlohy, ktoré sa človek naučí pomerne jednoducho, sú stále pre stroje veľkou výzvou. Napr. robot v preplnenom supermarkete sa nedokáže nakupujúcim vyhýbať dostatočne rýchlo. Zdá sa, že roboty ešte nejaký čas nebudú konkurovať ľudským futbalovým hráčom. Čo sa však týka riadenia, Google neustále robí pokroky vo vývoji samoriadiaceho auta.

„Ľudskosť“

Byť vrelý, empatický, rozosmiať druhých je niečo, čo ľudia stále robia lepšie ako roboty. Naša ľudskosť je daná tým, že máme emócie a potreby. Dnes už existujú stroje, ktoré dokážu emócie podľa postavenia svalov v tvári dekódovať a tiež ich vyjadrovať, je to však iba mechanizmus. Ďalšími aspektmi ľudskosti sú intuícia, kreativita, sedliacky rozum, starostlivosť o druhých, empatia. Otázkou je, či môžu byť roboty „ľudské“, kým nemajú vedomie, a tak i pocity a potreby.

Vedomie

Fenomén vedomia je stále nezodpovedanou otázkou nielen u robotov, ale i u človeka. Niektorí vedci si myslia, že základom pre vedomie je „mentálny život“. Aby robot mohol viesť mentálny život, musel by byť schopný pracovať so zmyslovými vnemami (napr. predstava psa) aj v ich neprítomnosti. Vedomie je asi najväčšou výzvou umelej inteligencie.

Americký filozof John Searle vysvetľuje, že počítače pracujú so symbolmi, ale nerozumejú ich významu. Pokiaľ by niekto chcel komunikovať s počítačom po čínsky, predloží mu čínske znaky, počítač ich vo svojom programe spracuje a odpovie opäť v čínskych znakoch. Táto osoba by si mohla myslieť, že počítač je mysliaca bytosť. V skutočnosti ale iba pracuje so znakmi spôsobom, ktorý ho niekto naučil. Vôbec netuší, čo je obsahom konverzácie. Kým teda počítač neporozumie operáciam, ktoré vykonáva, nemôže sa porovnávať s človekom.

Vývoju nových technológií v oblasti umelej inteligencie sa intenzívne venujú firmy ako Google, Facebook, Amazon či Baidu. Mnoho ľudí má strach, že umelá inteligenica dospeje až k tomu, že stroje budú samostatne myslieť a konať a ovládnu ľudstvo. Zatiaľ sa však javí ako opodstatnenejšia obava, že nás inteligentné stroje nahradia i na našich kvalifikovaných pracovných pozíciach. Záujemcom o hlbšie porozumenie problematike odporúčam prečítať si odkazy uvedené nižšie.

Zdroje:

http://www.economist.com/news/briefing/21650526-artificial-intelligence-scares-peopleexcessively-so-rise-machines http://www.ceskatelevize.cz/specialy/hydepark-civilizace/25.5.2013/ https://www.ted.com/talks/john_searle_our_shared_condition_consciousness

Zrkadlové neuróny – ako sa dokáže mozog vcítiť do druhého človeka?

V 90. rokoch objavili vedci z talianskej Parmy niečo nečakané. Jedného dňa sa výskumník, ktorého úlohou bolo sledovať mozgovú aktivitu makakov, natiahol pre svoje jedlo. V tej chvíli si všimol, že sa makakom aktivovali neuróny v premotorickom kortexe, teda v rovnakej oblasti, akoby sa samy naťahovali pre jedlo. Ako sa to však mohlo stať, ak sa opice nehýbali a iba pozorovali výskumníka?

V prednej časti mozgu sú neuróny, ktoré nazývame pohybové. Tieto neuróny vyšlú signál vždy, keď človek urobí nejaký pohyb. Avšak asi 20% z týchto neurónov vyšle signál i vtedy, keď sa človek iba pozerá, ako tento pohyb robí niekto iný. Hovoríme im zrkadlové neuróny.

Zrkadlové neuróny slúžia na porozumenie výrazom tváre. Keď sa váš kolega v práci zamračí znechutením nad pokazeným jedlom, zatvárite sa podobne ako on. Keď niekoho uvidíte usmievať sa, vaše zrkadlové neuróny vo vás vyvolajú pocit, akoby ste sa usmievali sami. Zdá sa, že čím lepšia je vaša schopnosť interpretovať výrazy tváre, tým aktívnejší je váš systém zrkadlových neurónov. Niektorí vedci preto považujú zrkadlové neuróny za základ empatie.

Ďalšou funkciou zrkadlových neurónov je napodobňovanie. Ak chceme napodobniť zložitú činnosť, musí si náš mozog prisvojiť uhol pohľadu niekoho iného. Neurovedec Vilayanur Ramachandran dokonca považuje zrkadlové neuróny za dôležitý míľnik vo vývoji ľudstva. Pred 75 000 rokmi sa náhle začali objavovať a šíriť schopnosti ako používanie nástrojov, využitie ohňa alebo jazyk. Ramachandran tvrdí, že toto všetko začalo náhlym vznikom prepracovanej sústavy zrkadlových neurónov: ak niekto objavil niečo užitočné, napr. použitie nového nástroja, tento poznatok sa rýchlo rozšíril do celej populácie a nezanikol.

Okrem motorických neurónov existuje ešte druh zrkadlových neurónov pre dotyk. Keď sa niekto dotkne mojej ruky, neurón v somatosenzorickej kôre v zmyslovej oblasti môjho mozgu vyšle signál. Ten istý neurón ale vyšle signál aj vtedy, keď sledujem ako sa niekto dotkne môjho kamaráta. Vcítim sa teda do pozície toho, koho sa niekto dotýka. Prečo nás to ale nezmätie a sami ten dotyk necítime? V koži máme receptory dotyku a bolesti, ktoré posielajú podnety do mozgu a informujú nás: „vcíť sa do pocitov druhého človeka, ale teba sa nikto nedotýka, nenechaj sa zmiasť“. Inak tomu je v prípade, že ruku znecitlivíte napr. injekciou, takže z nej nemôžu prichádzať žiadne podnety. Keď sa vtedy budeme pozerať, ako sa niekto niekoho dotýka, doslova to pocítime na svojej ruke.

Nádejou výskumníkov v oblasti zrkadlových neurónov je nájsť spôsob, ako pomôcť ľuďom s ťažkosťami v sociálnych interakciách, bežných napríklad u autizmu a schizofrénie. Možným využitím poznatkov o zrkadlových neurónov je tiež pomoc v obnovení pohybových schopností u pacientov po mozgovej mŕtvici. Kritici výskumu zrkadlových neurónov namietajú, že väčšina výskumov prebiehala na makakoch, nie na ľuďoch a tak musíme byť s interpetáciou výsledkov veľmi opatrní. Navyše výskum je založený na zobrazovaní aktivity mozgu, čo je možné len veľmi obmedzene. V robení záverov teda musíme byť opatrní.

Aké závery si z výskumu zrkadlových neurónov môžeme odniesť do každodenného života? V prvom rade, sme veľmi náchylní na „nákazu“ emóciami – či sa usmejem alebo zamračím, ovplyvním ľudí okolo seba a naopak. V druhom rade, aby som sa rýchlo naučil novú činnosť, mal/a by som pozorovať druhých, ako túto činnosť vykonávajú. A nakoniec, i pozorovanie toho, ako sa niekto príjemne dotýka druhého (masáž) vo mne môže vyvolať príjemné pocity.

Zdroje:

Caramazza, A., Anzellotti, S., Strnad, L., Lingnau, A. (2014). Embodied Cognition and Mirror Neurons: A Critical Assessment. Annual Review of Neuroscience, 37, 1-15. Perry, S, (2008). Mirror neurons. Ramachandran, V. (2009). TED talk: The neurons that shaped civilization

Zvyšuje počúvanie klasickej hudby inteligenciu?

Tak ako je tomu u mnohých mýtov, aj tzv. Mozartov efekt má reálny podklad vo vedeckých výsledkoch a mýtus z neho robí až následná chybná interpretácia.

Bolo to v roku 1993, kedy prestížny vedecký časopis Nature publikoval výskum Dr. Rauschera a jeho kolegov, v ktorom zistili, že 10 minútové počúvanie Mozartovej klavírnej sonáty K448 vedie k nárastu skóre v časti Standford-Binetoveho inteligenčného testu. Účastníci výskumu nevyplňovali celý test, ale len jednu časť, ktorá meria schopnosť vizuálno-priestorového usudzovania. Výkon tých, ktorí počúvali sonátu bol vyšší v prepočte na IQ skóre o 8-9 bodov, zatiaľ čo ostatní účastníci, ktorí sedeli v tichu alebo počúvali relaxačné inštrukcie nezaznamenali nárast.

Správa to bola atraktívna, pretože zdanlivo riešila dôležitý sociálny a ekonomický problém: ako zaručiť vysokú inteligenciu svojich potomkov. Našla si preto svoju cestu aj do popularizačných médií, kde už ale kolovala jej trochu fantastickejšia verzia: "Počúvanie Mozartovej hudby zvyšuje inteligenciu", alebo tiež že keď dieťa počúva akúkoľvek klasickú hudbu v ranom veku, bude neskôr inteligentnejšie a vôbec, osobnostne zrelšie. V americkom štáte Georgia dokonca uzákonili, že každá nová matka dostane CD s klasickou hudbou, na Floride musela v jasliach znieť klasická hudba každý deň.

Problém je ale v tom, že pozitívny efekt klavírnej sonáty na výkon v teste bol v spomínanom výskume len dočasný a tiež v tom, že nie je možné výsledok jednej úlohy interpretovať ako zvýšenie celkového intelektového nadania. V neposlednom rade sa vo výskume hovorí o jedinej klavírnej Sonáte, nevieme aký efekt by malo počúvanie inej sonáty od Mozarta, alebo možno od iného skladateľa, alebo inej hudobnej formy s použitím iných nástrojov ako je klavír a podobne.

Mozartov efekt nezachvátil ale len laickú verejnosť. Okrem autorov pôvodného výskumu sa o vzťah hudby a vizuálno-priestorových schopnosti začalo zaujímať viac odborníkov. Replikácie pôvodného výskumu priniesli zmiešané výsledky - niektoré pôvodné výsledky potvrdili, ale väčšina nie. Iní autori pozorovali tiež pozitívny vplyv Schubertovej hudby alebo hovoreného slova na vizuálno-špeciálnych funkcií, iní nenašli zmenu v úlohe po počúvaní akejkoľvek hudby alebo ticha či slová. Veľká štatistická analýza týchto štúdií uzatvára, že ak sa efekt našiel, bol zanedbateľný. Otázkou či dlhodobé počúvanie klasickej hudby zvyšuje celkové IQ aj na niekoľko rokov, sa nikto nezaoberal, pretože na to nebol dôvod. Neexistuje teda žiadny dôkaz, aby počúvanie klasickej hudby zvyšovalo inteligenciu.

Jedna skupina odborníkov sa domnieva, že priaznivý efekt Mozartovej sonáty mohli niektorí výskumníci pozorovať preto, že hudba ako taká vedie k zvýšeniu celkového nabudeniu organizmu, čo má nepriamy pozitívny efekt na výkon v akýchkoľvek kognitívnych úlohách, aj to ale len dočasný. Optimistickejší odborníci usudzujú, že spracovanie hudby a vizuálno-priestorových schopnosti využívajú v mozgu tie isté štruktúry, a preto sú vzájomne prepojené.

Dobrou správou pre milovníkov akejkoľvek hudby je, že ľudia, ktorí hrajú na hudobný nástroj, dosahujú lepšie výsledky v testoch slovnej pamäti, majú lepšiu výslovnosť v cudzom jazyku, ktorý sa učí, a tiež lepšie exekutívne funkcie. Hra na hudobný nástroj teda môže poslúžiť ako účinný kognitívny tréning.

Využívame len 10% kapacity mozgu?

Žiadny vedecký objav modernej psychológie nedáva za pravdu rozšírenému mýtu, podľa ktorého "priemerný človek využíva iba 10% kapacity svojho mozgu." Ako je ale možné, že je tak rozšírený?

Za najpravdepodobnejšie korene tohto omylu je považovaný výrok jedného z prvých psychológov - Williama Jamesa, ktorý sa vo svojom diele Energia ľudí vyjadril, že ľudia za život rozvinú iba 10% ich skrytých mentálnych schopností. Odkazoval tým na vágne, bližšie nešpecifikovaný pojem mentálnej energie. Za ďalší možný zdroj omylu sa považujú pokusy slávneho neurovedca Wildera Penfielda, ktorý pri elektrickej stimulácii rôznych častí mozgu zistil, že stimulácia niektorých oblastí nevedie k žiadnym vonkajším prejavom. To boli ale neurovedy 30-tych rokov a dnes už vieme, že každá bunka v mozgu plní spolu s ostatnými určitú funkciu. Myslím, že ďalším možným zdrojom podpory pre mýtus sa stal objav gliových buniek, ktoré vedľa neurónov tvoria asi 85% objemu mozgu. Donedávna sa ich funkcia podceňovala a malo sa za to, že iba drží mozog pohromade (odtiaľ ich meno - glia = latinsky lepidlo) a sú zodpovedné za jeho zásobenie živinami a kyslíkom. Opak je ale pravdou a preto zase nemôžeme dať 10 percentuálnemu mýtu za pravdu.

Ak ste doteraz mýtus pokladali za pravdivý, nemusíte sa cítiť zle, ukazuje sa, že zhruba polovica učiteľov v Holandsku aj Anglicku mu tiež veria.

Akokoľvek mýtus vznikol a bol podporovaný, nič z toho, čo dnes o mozgu vieme, nám nedovoľuje uvažovať o jeho opodstatnenosti. Dokonca, aj keď oddychuje alebo spíme, sú niektoré časti mozgu takmer rovnako aktívne ako cez deň. Tiež u závažných poškodeniach mozgu (po mozgových príhodách alebo úrazoch), kedy odumiera alebo je poškodené menej než niekoľko percent buniek mozgu, je obmedzenie funkčnosti nervovej sústavy rozsiahle a výrazne ovplyvňuje život človeka. Keby sme 90% mozgu nepotrebovali, akékoľvek jeho poškodenie by sa obišlo bez tak závažných následkov.

Ako by mohol pod tlakom evolúcie prežiť organizmus, ktorému mozog funguje len na desať percent a spotrebuje nato pätinu energie celého organizmu?

Aby sme sa vrátili späť k Williamovi Jamesovi, domnievam sa, že jeho odkaz je trochu subtílnejší. Každý z nás by dokázal zabehnúť polmaratón, alebo si zapamätať hlavné mestá všetkých štátov krajiny. Ale potenciál ako taký nestačí a pre rozvinutie všetkých našich možností je potrebná vôľa a práca. A možno tých 10% je naším potenciálom - na energiu našich svalov, kapacity pľúc, kapacity pamäte - a naše snaženie predstavuje zvyšných 90% cesty k úspechu.

Einsteinov mozog

Albert Einstein zomrel r. 1955 v Princetone (New Jersey, USA) na výduť aorty. Bolo mu 76 rokov.

Niektorí tvrdia, že Einstein daroval v poslednej vôli svoj mozog na vedecké účely, iní hovoria, že povolenie na to dal Eisteinův syn s podmienkou, že závery skúmania budú publikované v odborných časopisoch.

Avšak, Eisnteinův mozog bol sedem a pol hodiny po jeho smrti vyňatý z tela. Pitvu na Princetonskej univerzite vykonával dr. Thomas Stoltz Harvey. Ten mozog vyňal, zvážil a odniesol ho do laboratória Pensylvánskej univerzity. Tam Einsteinov mozog odfotografoval z mnohých uhlov, rozkrájali na 240 malých kúskov, a ďalších 2000 tenkých plátkov, z ktorých niektoré si ponechal a ďalšie odovzdal vedúcim patológom. Až po 20 rokoch novinár Steven Levy odhalil malé tajomstvo patológov.

Čo sme sa dozvedeli z tohto geniálneho mozgu?

Vedecké výskumy zistili, že Eisteinova genialita nespočívala v neobvyklej veľkosti mozgu, ktorý vážil 1230g (priemerná váha ľudského mozgu je 1300 - 1400 g). Nebol teda veľký, zato bol ale mimoriadne komplikovaný a mal neobvyklú anatómiu.

Einstein mal nadpriemerný počet gliových buniek, ktoré sú zodpovedné za podporu a výživu neurónov. To mohlo byť spôsobené neobvykle vysokú mozgovú aktivitou, pretože mozog výživu jednoducho potreboval. Avšak tento rozdiel bol štatisticky významný v ľavom parietálnom laloku, ktorý je súčasťou asociačných oblastí mozgovej kôry, ktoré sú zodpovedné za inkorporácui a syntézu informácií z mnohých iných mozgových oblastí.

Jeho mozog mal tenšiu kôru, však s vyššiu hustotu neurónov.

Corpus callosum, ktoré zodpovedá za komunikáciu medzi oboma hemisférami, bolo o 20% širší a obsahovalo teda viac neurónových spojení, než u bežnej populácie. To mohlo viesť k lepšej komunikácii medzi oboma hemisférami.

Fotografie mozgu ukazujú zväčšenú Sylviovu ryhu (ktorá rozdeľuje parietálný lalok na dve časti), ale zároveň aj to, že jej časť chýbala. Teoreticky to mohlo spôsobiť rýchlejší prenos informácií medzi neurónmi tejto oblasti.

Spodná oblasť temenného laloku v oboch hemisférach bola oproti priemeru o 15% väčšia. Táto oblasť je dôležitá pre vizuálne a priestorové myslenie, matematické úvahy a trojdimenzionálne predstavy.

Celý Einsteinov život bol podobne ako jeho mozog neobvyklý. Pri vedeckom skúmaní jeho mozgu boli zistené isté anatomicko-štrukturálne zvláštnosti, ktoré mohli byť dôsledkom jeho geniality, však tiež dôsledkom niektorých udalostí jeho života (osobnostné charakteristiky, stretnutie s Milevou, štúdium matematiky s rozvinutejším intelektom, apod.) A pomalšie pracovné tempo.

Vedeckým skúmaním tiež prešli mozgy niektorých ďalších géniovi a slávnych osobností. Ale o tom zasa niekedy nabudúce.

Zdroje: Wiki

Wikipedia conVERTER: fyzici osobnosti.ca: Albert Einstein Wikipedia: Einsteinův mozek Einsteinův mozek pod lupou DeenaMedia WiseGeek: Jak se liší Einsteinův mozek od normálního